联系电话:400-029-7370微博
微信公众号

主页 > 备考 > 考试大纲 > 考研数学 > 正文

2017考研数学(三)考试大纲

2017-05-12 11:03 来源:未知


2017年考研数学()大纲
    在逐字逐句的比对后,发现2016年考研数学三大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。
  下面我们就看看今年数学三高等数学部分的大纲要求:
  一、函数、极限、连续
  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
  2.了解函数的有界性、单调性、周期性和奇偶性.
  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.了解数列极限和函数极限(包括左极限与右极限)的概念.
  6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.
  7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.
  8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
  9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
  二、一元函数微分学
  1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
  2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.
  3.了解高阶导数的概念,会求简单函数的高阶导数.
  4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
  5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
  6.会用洛必达法则求极限.
  7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
  8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.
  9.会描述简单函数的图形.
    三、一元函数积分学
  1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.
  2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.
  3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.
  4.了解反常积分的概念,会计算反常积分.
  四、多元函数微积分学
  1.了解多元函数的概念,了解二元函数的几何意义.
  2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
  3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多隐函数的偏导数.
  4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.
  5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.
  五、无穷级数
  1.了解级数的收敛与发散、收敛级数的和的概念.
  2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.

课程推荐